
CONTACT PROBLEM OF ELASTICITY THEORY FOR NARROW REGIONS 
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The problem of die pressure in an elastic half-space is a classical problem of elasticity 
theory. Its solution is a necessary component part of designing many objects in machine and 
instrument building. Pressure distribution at the contact is found as a result of solving 
a two-dimensional first-order integral equation with a polar kernel. 

In this work, an asymptotic method is suggested for narrow contact regions making it pos- 
sible to reduce this equation to a set of of two unidimensional integral equations. The of 
first connects pressure distribution in the transverse direction with the transverse shape 
of elastic displacement, and the second is an equation relating to the unknown load in the section. 
An asymptotic approach makes it possible to substantiate the heuristic method for plane sec- 
tions [i]. 

Analytical solutions have been obtained for two problems: contact for a die with an 
elliptical relationship for width; contact for a semiinfinite die with a constant load in 
each section. In the case of an elliptical die, with a flat base, comparison is carried out 
for asymptotic and precise [I] results. The method suggested rightly embraces the first term 
of the expansion for small parameter E (characteristic prolation of the contact) for the pre- 
cise solution of the problem. 

i. The problem of pressure for a die of limited dimensions in an elastic half-space 
is reduced to an integral equation [i] 

p' (~, N) rl~ dN __ g' (x, g) 0jj 
Gxy 

Here g'(x, y) is elastic displacement; 8 = (I - v2)/(vEl) + (i -- v22)/(zE2); vl, v2, El, E z 
are Poisson's ratios and elasticity moduli for the die and half-space; x and y are dimension- 
less Cartesian coordinates in a plane obtained from dimensional coordinates by dividing them 
by the L-characteristic dimension of the region Gxy of the contact; p'(x, y) is pressure dis- 
tribution. 

Let the contact in the coordinate system 9: ~ be narrow. It is assumed that x- x 
(% 4), Y--Y(% ~), (% ~)E G~ and the reflection of G~ on Gxy prescribed by these equations 
is in a one-to-one way mutually without interruption differentiated with a functional determi- 
nant not equal to zero. Then C exists such that Ix~[, !~(~I, Ix~l, IY~I <~ C . In addition, it is 
assumed that the following inequalities are fulfilled: 

1'~ (%, ~) - -  o~ ( %  ~) I < C~i ~ - -  ~ I ~ ,  Ix~ (% ~ )  - -  ~'~ (% ~-.) I ~< C~ 1 ~ - -  ~', t ~', ( 1 . 2  ) 

l Y~ ( ~ ,  ~) - -  'Jq;!(,~, I~)1 ~< C~ I ~ - -  cp~ I ~,  l Y~ (~, ~ )  - -  'J~ (% ~..) 1 ~< G I ~ - -  I~'. I v', "~'. ~ ,  ~ ,  W > 0. 

L e t ,  in  v a r i a b l e s  o f  ~ and ~, r e g i o n  Gv~ ,  d e p e n d  on s so  t h a t  i n  v a r i a b l e s  u = % 
u = (~ -- V(r region Guv corresponding to G~, has the form G~ = {(~, v): ~- ~< ~ ~< u +, 
~-(u) ~< u<~ v+(u)} (V(~), v+(u) are continuous functions). The limit of region G~ with 
e + 0 is a line ~ : V(9) which in future we shall call the skeletal line. 

In variables u and v Eq. (i.I) is written in the form 

f f  p(L ~1) d~ dq ~(u, u) 
d O  

where r = (x(u, v), y(u, v) ) ;  g = g ' / L ; p  = Op'O(x, y)/O (q), r It is noted that in the left-hand part 
of (1.3), just as in the right-hand part, there is, small parameter ~ since Ixv], ]y~I<~ Ca. 

We introduce the notations a = max l~§ ~-(~z)I, R(t~)~-r(u, 0) (R(t~) governs the hodograph 
z~ 

of the skeletal line). Let r := R(u) be a smooth curve. Then as follows from the Lagrangian 
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finite increment equation there exists M> 0: [R(~ @ 6)- R(u)[~< M[61 It is also assumed 
that m > 0, 8" > 0 exist such that IR(u @ ~)--R(u) I>Im]81 for any ]6] < 8". 

2. We obtain an asymptotic expression of the integral in (1.3) with e § 0 assuming that 
p = 0(i) is a continuous function in Guv. We fix point (~, v)~Guv, u=/=u+ (see Fig. i). We 
select infinitely small v so that u - v > u-, u + v < u +, v < 6*, e L- o(v), my > 4~2Cae. We 
present the integral in the form of the sum of integrals for the regions 0)~ = Guy ~ {(u', u): 
lu' -- ul<v} (11) and o$ -- Guv\o)v (12) , and in each term we separate the principal part. The fol- 
lowing equation is correct: 

,l-v v+(D u+ ~'+(D 

I., = d~  [ r (u, v) - -  r (~, n )] + d~  ] r (u, v) - -  r (~, ~)1" 
u -  v-(D u+~ v-(D 

We transform the denominator of the integrands: 

I r ( u , v ) - - r ( ~ , ~ l ) l = l R ( u ) - - R ( ~ )  + A + B  l, A = r ( u , v ) - - r ( u , O ) , B - r ( ~ , O ) - - r ( ~ , ~ l ) .  

According to the Lagrangian theorem, the inequality IAI, IBI ~< ]/r'2cae, is correct, by the use of 
which we obtain 

t 1 [ = [IA + BI~ + 2((A + B), 
= i t ( u ,  v ) - r ( L  ~)l I n ( ~ ) - n ( D I  I 

( n  (~) - n (~)))l/I n (~) - -  R (~) + A + B I/I n (~) - -  n (~)I/(1 n (u) - n (DI + 

+ [ R (u) - -  R (~) + A + B 1) ~< 16 2c%%~ + ] / f f  CMa (~+ -- u-) a =___ ~, (~, v). 
3ma~ 3 

t t e r e  t h e  i n e q u a l i t y  JR(u) - -  R(~) + A + B I ~ IR(u) - -  R(~)[ - -  IAI - [BI ~> my/2  i s  u s e d .  

We s e l e c t  v ,  w h i c h  u n t i l  now h a s  r e m a i n e d  q u i t e  a r b i t r a r y ,  so  t h a t  ~ = o ( v 3 ) .  Then  

? 
A + 0 with e § 0 uniformly for (~, N) ~o~ 

of the continuity of p there exists Mq > 0 with [ql 
expression 

We designate 

< Mq. 

v+(u) 
q (~) = j 

v-(u) 
p (U, N) dN In view 

12 N 

Then principal part 12 is given by the 

u--v u+ 
y q(~)d~ y q(~)d~ 

[R($ ) - -R!u )  [ + I n ( ~ ) - -  n (ul[" 
u-- u+V 

(2.2) 

In fact, since A + 0, 
does not exceed (u + -u-)Mql'(e, v) § 0. 

We move to estimating integral I~: 

= J O l r ( u ,  v ) - - r ( ~ ,  ~1)1 
~ 

the difference modulus for the right-hand parts of (2.1) and (2.2) 

y ~  P (~' ~ - P (~' n) dq. 
+ j i ~ , ~ ) - - _ ~ ( g , q )  Id~ _ ( 2 . 3 )  

o V 

Since p = O(l),  [P(L ~l)--p(u,  q ) l ~ w ( y :  p,  G ~ )  
according to the Cantor theorem w ~ 0 with e + 0, then the second integral in (2.3) may be 
ignored in comparison with the first. 

In region ~v we write the maximum rectangle Q~ = {(u', v): ]u'--ul~v , vF(u, v)~v 
~ v ~  (u; v)} ,  w h e r e  v~ (u, v ) = m i n v +  (u), �9 vF(u, v ) - - m a x  v-(u), u ~ I u - -  v, u-~ w] . Due t o  c o n -  
t i n u i t y  of the v• the values of Ivy(u, v) - v+(u) l, Iv~u, v) - v-(u) I are asymptotically 

(w is the continuity modulus for p at contact Guv)and 
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small. Then meas (0)~\Q,)~is asmymptotically small compared with meas (Qv.), and this means that 

I r~-u-v) ~ - r ( ~  '})1-- o Ir(u, ~)--r(g,  n)l " 
~v \ Ov Ov , 

(2.4) 

We transform the denominator in the right-hand part of (2.4) for (~, q)~ Q~. By using a 
finite increment equation we obtain 

( ~ -  u), (2 .5)  

r 

w h e r e  h x = xu(~' , ~q) - -  xu(u , 1]); A ~ = x u ( u ,  l ] ) - -xu (u ,  0) ; A~. == Y~(~" , l ] ) - -Y~ (U ,~ l ) ;Au=  Yu~lu,~l) 
- - yu (u ,  0); ~', ~" a r e  p o i n t s  l y i n g  b e t w e e n  ~ and u .  As f o l l o w s  f rom ( 1 . 2 ) ,  t h e  f o l l o w i n g  
i n e q u a l i t i e s  a r e  c o r r e c t :  ]f~xl ~ C1"~' IA;I < b ' l  av2gv~, lay l<C~v%,  IA;] < C ~ a w e  v'-. C o n s i d e r i n g  
( 2 . 5 )  we f i n d  t h a t  r(g, ~ ) = r ( u ,  ~ ) + ( R ' ( u ) + b ) ( g - - u ) ,  ] b l ~ C l ( v v ~ + a v 2 e  "P,,- + v v , +  
a ~ & , )  ~ 0 . 

We present the integral with respect to Qv in the form 

lr (u, v ) - - r (L , l )  I = P ( U ' ~ l ) [ l r ( u ' v ) - - r ( u ' r l ) - - ( g - - u ) ( R ' ( u ) + b ) F  1 -  (2.6) 
Qv Qv 

f ~  P(UJI}d~d~l 
t r (u ,  v ) - - r ( u ,  ~ l ) - - R ' ( ~ ) ( ~ - - u ) i - 1 ] d ~ d ~ l  + Jr(u, v ) - - r ~ , ~ - ) : R '  (u)(~--u)!  " 

Qv 

In the right-hand part of (2.6) the first integral is asymptotically small in comparison with 
the second, in view of the uniform smallness of Ib] �9 Then, considering that Ir(u, v)--r(u, N)I 
is a value of the order of s (since r~ ~e), by introducing the notation 

s =  ((r (u, v)-- r(u, ~)), R'(u)) t ~ Ir (u, v)-- r(~, ~)t 2 ( 2 . 7 )  
a I R '  (u)I" ' e 'z I R' (~)t  ~ 

(s and t are of the order of unity) and by calculating the second integral in the right-hand 
part of (2.6), we have 

v+ (u,v) 
1 ~=v 

t 
"J p(u,  q) arsh ~--es  I d~. ( 2 . 8 )  

Due to the fact that c = 0(u), values of (_____v- es)/(e~t'~--s '~) are asymptotically large. Then 
by using the relationship arsh x = sgn x In (21X I) + 0(x-2), x + ~, we find that the principal 
part of the expression in square brackets of (2.8) equals 21n [2v/(e]/t 2-sz)] . By using the 
asymptotic smallness of values Iv + - vi I and substituting the upper and lower integration lim- 
its by v + and v-, we find that 

v+(u) 
2 S 2v & ~ ~ p (~t, ~]) In e VV_ZT_~ ~ d n. ( 2 . 9  ) 

~-(u) 
We t r a n s f o r m  t h e  r i g h t - h a n d  p a r t  o f  e x p r e s s i o n  ( 2 . 2 ) :  

u--v u +  u--v u +  

I z ~  I R ( D _ R ( u )  I o itl (~)-~-~-ff) ! t R ( ~ ) _ R ( u )  [ + q(u) ~R(~)--R(u) ( 
u - -  u + ~  u - -  u + ~  

i: } q (u) dg q (u) in (it+ - -  U) (u - -  U-) 2q (~1 Inv.  
t n '  (u) I I ~ - -  u-------~ + I - -  ~ I + ! n '  (4) I I n '  (4) 

u 

(2.1o) 

u +  

integrals with z ~ 0 have the limit ~ q(~)--q(u) d~, and the limit of the four The first two 
IR (~) - -  R (u) ] 

u+ u-- 

] { I I }d~. Taking this into account and subsequent integrals is q(u) v.~. IR(~)--R(u) I IR'(u)(~--u)] 
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also (2.9), it is possible to write Eq. 

v+tu) 

y I l/'-(l~)I- p (tt, ~]) in  
v-(u) 

u+ 

+ q(u)  v .p .  1R(g ) - R(u) I 
U - -  

(1.3) in the form 

u~ 

2 S q ( ~ ) -  q(u) V t ~ s , z  dq + v .p ,  .IR (~) _ R (u) I 
1/-- 

d~ + 

l / d ~ +  q(u) In 0*+ - u) ( ' * -  ~- )  g (~ ,~ )  

(2.11) 

It is noted that in the final equation there is no ~ (which during derivation is selected with 
a reasonable degree of arbitrariness). 

3. We write Eq. (2.11) for two coordinate systems. 

A. An affine coordinate system ~, ~ . Let (%, er (e~, ey) bases, such that the vec- 
tors have unit length, and the Tollowing equations hold: e m = e~, er ~- ex cos~ ~ ey sinm ; where 

is the angle between er and e x Then r = ~e~ +~er ~--- x-- ycota, ~ = y/sine . Let also 
V(~) -------0 (the skeletal line is a section lying on straight line ~ = 0), and consequently, 

= a p ' .  Since v =%b,/e, u ---- ~ , then r (u ,  v ) - - r ( u ,  ~1) = e ( v - -  R(~) = e~ In this way p O tsin 
~ ) e r  R ' ( u )  = %,  s =  ( v - - ~ l )  cosr = ( v - - * l ) z  ,,- 

Equation (2.11) takes the form 

u+ v+(u) 

v . p . y  q(D--q(u) d~+q(u)ln"4(u+--u)(u--u-)  2 ~ p(u,~])ln[v--q]d~]+ z(u,v) 
~ - - - ~ i  ,i~'~ ~ ~ . . . . .  u- v-(u) 

(3 .1)  

B. A polar coordinate system x - - - - ~  cos q), y - ~  ~ s in  q) ._:. Let the skeletal line lie on 
a c i r c l e  o f  u n i t  r a d i u s .  T h e n  u = (p, v = ( ~ - -  l ) / e ,  R ( u ) - -  e x c o s  u q -  e y s i n u ,  R ' ( u )  = - - e ~ s i n  u 

+ e.~ cos u, r(u,  v) = (t + ~v)R(u),  r(u, v) - -  r(u, ~)  = ~(v - -  ~l)R(u), R(~)  - -  R(u)  = (cos ~ - -  cos u)% + 

(s in  ~ - -  s in  u )%,  s = O, t" = (v - -  q)~, t 1 = I 1 
]R (~) - -  R (u) I I R" (u) ( ~ - -  u) l 

Equation (2.11) is transformed to 

u+ l u+ -- u u-- u - ] ~+(~) 

v . p . ~  q(~)--q(u) d~+q(u)1n64 t g ~ t g - " - C  - 2 ~ p(u,~l) ln lv - -~ l ld~+ g(u,v) (3.2) 

u -  2 sin v-(u) 

We note one property of Eqs. (3.1) and (3.2). It assumed that a solution for p(u, v) 
is found with prescribed g(u, v), v• Then for any continuous function z(u) p1(u, v) = 
p(u, v - z(u)) there will be a solution of the problem with g1(u, v) = g(u, v - z(u)), 
v~(u) = v• - z(u), i.e., distortion of the contact region with retention of the width in 
each section, u = const leads to the same distortion for pressure distribution. 

4. We study Eq. (2.11). If we subtract from (2.11) a similar equation written with 
v = v~ = (v+(u) + v-(u))/2, then we obtain an equation of plane elasticity theory: 

v+(~) 

I a' (u) l ~ p (u, q) In - -  t 2 (u, v, 0) ~ 7 ( ~ ,  v, 0) dq = ~y  [g(u,  @ - - g  (u))], ( 4 . 1 )  
v-(u) 

w h i c h  c o n n e c t s  p r e s s u r e  d i s t r i b u t i o n  i n  e a c h  s e c t i o n  u = c o n s t  w i t h  t h e  s h a p e  o f  e l a s t i c  
displacements in this section. As a result of solving (4.1), p(u, v) is expressed in terms 
of v-(u), v+(u), q(u). By placing it in (2.11) with v = v~ we have a unidimensional equa- 
tion with respect to q(u): 

u+ u+ 
(~)) ~ { 1 l } q(~z) 4(u+--u)(u.--u -) 

q --q(u) d~+ q(u) d~ i R ( g l _ n ( u )  I - -  R' ( g - - - ) l  + -  In 2 = v .p .  IR - -  R(u) l  I (u) IR '  (u)l s ( 4 . 2 )  
U--  U - -  

g (~,, v ~ (~))  
,+(u) 

Y -{- ~ p (u, n) In ~ft"  (u, v ~ (u), n) - -  s~ (u, v ~ (u): n) dn. 

v--(u) 
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Thus, the original two-dimensional integral equation breaks down into two unidimension- 
al equations ((4.1) and (4.2)) solved successively. 

We consider the solution of (3.1). For an affine coordinate system, (4.2) is written 
in the form of the equation 

v+(u) 

p(u,~l) ln[V~ . d~l = . ~ [ g t  (u ,v)_g(u ,  vO(u))], 
o-(u) 

whose solution is [2] 

= _  i ~ - n) (~ - , - i  
~l--V • g~ (u, n) drl + q 

~g(v+_v)(u_ _)(go(u, ~ =Og(~,u)/O@. 
( 4 . 3 )  

We place (4.3) in (3.1) assuming that v = v~ and we use a lemma [2] about substitution 
of the order of integration in the integral in the right-hand part of Equality (3.1). By 

e 

using a tabulated integral [3] y ln lx l  
_ c ] / c ~ _ z  ~ dx = nln--~-c we find the contribution of the second 

term from (4.3) in the right-hand part of (3.1): 

v+ 

y q l n l v ~  &] = q l n  ( v + - v - ) z  ( 4 . 4 )  
o _  ~ V ( , + -  n) (~, - ~ - )  16 

The contribution of the first term from (4.3) is 

j" g, (u, n) g(i,+ - n) (n - ~-) ~n I v -  o~ an. 
o- _ ( ~ - n )  V ( v +  - ,) ( , -  , - )  

The expression in square brackets is found by means of residue theory and tabulated integrals [3]: 

v+ 

~~ ( ~ - , l ) V ( ~ + - ~ ) ( ~ - v  - )  ~ g ( ~ + - ~ ) ( ~ - ~ - )  ~ (;T-_7) �9 ( 4 . 5 )  
v -  

Taking account of (4.4) and (4.5) the integral in the right-hand part of (3.1) is 

v+  v+  

, ;  ( ) "~ go (u, ~1) sgn (~1 - -  v~ d~l - -  .Ts  go (u, ~1) X sgn (11 - -  v ~ arccos _ ~9 (-~'~ - -  ~ - z ' ) ]  tl -- v~ [ dTI. ( 4 . 6 )  

~ -  1)- 

T h e  first term in (4.6) equals [g(u, v+(u)) + g(u, v-(u)) - 2g(u, v~ The second in 
(4.6) is in the form of the sum of two integrals with respect to sections [v-, v~ Iv ~ v+], 
which are taken by parts. As a result of this 

t g(u, v) dv 
+ g ( u , v  ~  V'(v + - v ) ( v - v - )  " 

Equation (3.1) is written in final form 
u+ v+(u) ] ' y  

= -~7- 
v-(u) 

g (u, v) dv 

l / ( ~  § (~) - , )  ( ,  - v -  ( , ) )  " 

Without any loss of generality it is assumed that u -+ = -+i. Let the displacement g be in- 
dependent of v and v+(u) - v-(u) = 2,/'1 - u 2 (particularly in considering a die of elliptical 

shape). With these assumptions p(u, v) = q(u) and Eq. (4.7) takes a simpler 
g (~§ (u) - v) (o - ~- (~)) 

form: 

1 

f q(~)--q(u) 16 (4.8) 
I ~ - -  u [ d~ + q (u) in  g (u) 

- - I  g E 
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This equation has a polynomial solution. We assume that g(u) = bnu 
+ b 0 and we shall find the solution of q(u) = anun + an_~un-~ + ... + a 0. 
ship 

+ bn_~un-Z + 
We use the relation- 

--1 

n--1 l, lt 1)  "/t-k 1 ] .  [(-  + 
h = 0  

Then in order to determine aj a set of linear equations is obtained 

ah In----a-.-- .  + �9 ,, aj = - -  
e" j= l  j=~+l ] - - k  s 

w i t h  a n  u p p e r  t r i a n g u l a r  m a t r i x .  I n  t h e  p a r t i c u l a r  c a s e  g ( u )  = c o n s t ,  q ( u )  , = g / ( E  i n  ( 1 6 / ~ 2 ) ) .  

F o r  a n  e l l i p t i c a l  d i e  w i t h  a f l a t  b a s e ,  t h e r e  i s  a n  e q u a t i o n  [ 1 ]  q = g (F  

is a first-order completeelliptical integral). As follows from [4], with e ~ 0, F ~ e in (4/E) 
Thus the accurate and approximate solutions are asymptotically close. 

We study the case of unbounded regions. Let G~ = {(u, v): u~ O, Jv- v~ ~ d(u)} �9 We 
shall consider the equation 

lim P (~' ~) ~/(u_~)2+s2 (v_n)2 ~r(l_~)2+s2(v0(1)_n)2 -T -~ (4.9) 
T ~  GT 

where G T = G~ N {(u, v): u~T}; v = y/e; u = x (x, y are rectangular coordinates). Without con- 
sidering the second term in square brackets under the integral, the limit in the left-hand 
part may be considered infinite. Presence of this term leads to subtraction of an "infinite" 
displacement at fixed point (u, v) = (i, v~ 

The expression for the integral in the left-hand part of (4.9) for fixed T is obtained 
from (4.7) with u- = 0, u + = T. Then (4.9) is written in the form 

q (~) - -  q (u) �9 (~) --  q (t) d~ + q (u) In u ( r - -  u) T - -  t In , d (i) ~+ g (u) i ~ _ u  I d ~ - -  q = 2q(u)  - -  2q (l)  ~ n - - T . "  
0 

= {Inu ~In-~ = 2qm d-~ + s 
We shall take a solution of (4.10) with q(u) const. Then l im  _ .  r--ul ~ d(u) g(u_.__!) 

T ~  

By solving this equation we find the halfwidth of the contact region d(u) = d(1) ~ exp [~(u)/ 
(2q~)]. In the particular case g(u) = 0 d(u) = d(1)/~ (generally speaking the contact is para- 
bolic in shape with a curvilinear "axis"). 

It is noted that Eq. (4.7) has a class of accurate solutions with q ~ 0 on condition 
that g(u, v) with fixed u is in the form of a sum of an uneven function for the argument 
2(v - v~ + - v-) and a linear combination of Chebyshev polynomials (excluding the zero-order 
polynomial) from the same argument. It follows from this that the integral in the right-hand 
part of (4.7) equals zero under these conditions. 

The procedure for obtaining (4.7) is also directly carried over to the case of Eq. (3.2), 
which may be written in the form 

q (~) - -  q (u) d~ + q(u) ln  1024 tg ~ t g ~  t 

u -  21sin~-~ ' -~  I (v+ ( u ) _ v - ( u ) ) 2  e~ '- = 'ge . - (u )  

g (u, v) dv 

. 

2. 
3. 

4. 
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